隨著無人系統(tǒng)在生產(chǎn)、生活中的廣泛應(yīng)用,未來智能無人系統(tǒng)必將朝著多域協(xié)同化發(fā)展。本書面向復(fù)雜、動態(tài)、多約束的地面與近地面作業(yè)場景,將無人車、無人機、水陸兩棲無人船等平臺自主導(dǎo)航技術(shù)進行統(tǒng)一整合,提出了一整套完整的陸上無人系統(tǒng)自主導(dǎo)航體系架構(gòu),并在該理論框架下詳細(xì)介紹了無人系統(tǒng)自主導(dǎo)航過程中的若干核心關(guān)鍵技術(shù)。 本書可供
這是一本寫給青少年看的人工智能科普圖書,目的是啟蒙科學(xué)素養(yǎng),開闊科學(xué)視野,培養(yǎng)科學(xué)思維,鍛煉動手能力,讓小讀者們了解人工智能的過去、現(xiàn)在和未來,從而更好地融入人工智能時代。通過閱讀本書,小讀者們不僅會了解到“存在這樣那樣的人工智能”,還會一睹很多人工智能發(fā)展的過程和細(xì)節(jié):科學(xué)家如何提出問題并想到絕妙的點子,技術(shù)如何從第
本書源于阿里巴巴千億級知識圖譜構(gòu)建與產(chǎn)業(yè)化應(yīng)用的工作總結(jié),對知識圖譜理論和大規(guī)模工業(yè)實踐進行了全面和深入的闡述。本書以阿里巴巴的實戰(zhàn)經(jīng)驗為中心,以深厚的理論成果為支撐,詳細(xì)闡述了知識圖譜的方方面面。首先介紹工業(yè)場景下知識圖譜的現(xiàn)狀、存在的問題和架構(gòu)設(shè)計;然后從知識表示、知識融合、知識獲取、知識推理、知識存儲和知識圖譜前
本書首先從人工智能的定義講起,就人工智能的早期歷史、思維和智能的內(nèi)涵、新千年人工智能的發(fā)展進行了簡要論述。第二部分詳細(xì)講述了人工智能中的知識表示、機器學(xué)習(xí)、神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)、智能語音技術(shù)、計算機視覺、自然語言處理和知識圖譜技術(shù)等基礎(chǔ)知識,并通過人工智能在醫(yī)療、交通、生活、金融、零售、安防中的經(jīng)典的成功應(yīng)用案例讓讀者更
本書主要介紹了人工智能的基礎(chǔ)知識和實用技術(shù)。本書共8章,包括“人工智能:開啟智慧新時代”“Python:人工智能開發(fā)語言”“線性回歸:預(yù)測未來趨勢”“分門別類:幫你‘分而治之’”“物以類聚:發(fā)現(xiàn)新簇群”“個性化推薦:主動滿足你的需求”“語音識別:讓機器對你言聽計從”“人臉識別:機器也認(rèn)識你”。 本書以培養(yǎng)學(xué)生人工智能素
本書聚焦信息科學(xué)、生命科學(xué)、新能源、新材料等為代表的高科技領(lǐng)域,以及物理、化學(xué)、數(shù)學(xué)等基礎(chǔ)科學(xué)的進展與新興技術(shù)的交叉融合,其中70%的內(nèi)容來源于IEEE計算機協(xié)會相關(guān)刊物內(nèi)容的全文翻譯,另外30%的內(nèi)容由STEERTech和iCANXTalks上的國際知名科學(xué)家的學(xué)術(shù)報告、報道以及相關(guān)活動內(nèi)容組成。本書將以創(chuàng)新的方式宣
人的智能和AI賦能的機器智能在自動化控制領(lǐng)域的共融共存形成了人機混合智能系統(tǒng)這一新型的系統(tǒng)形式和智能形式。一方面,這類系統(tǒng)所代表的系統(tǒng)結(jié)構(gòu)形式是傳統(tǒng)自動化控制系統(tǒng)應(yīng)對AI賦能的機器智能變革的必然發(fā)展形勢;另一方面,它所代表的智能形式也成為AI未來發(fā)展的重要甚至是的終極形式。在本《人機混合智能系統(tǒng)自主性理論和方法》,我們
本書是一本系統(tǒng)介紹機器學(xué)習(xí)所涉及的數(shù)學(xué)知識和相關(guān)Python編程的實例工具書,同時還介紹了非常經(jīng)典的綜合案例,除了編寫機器學(xué)習(xí)的代碼,還編寫了深度學(xué)習(xí)的代碼。本書一共分為兩部分。 第一部分為數(shù)學(xué)基礎(chǔ)知識部分,包含8個章節(jié),介紹了微積分、線性代數(shù)、概率統(tǒng)計、信息論、模糊數(shù)學(xué)、隨機過程、凸優(yōu)化和圖論的系統(tǒng)知識體系及幾個數(shù)學(xué)
本書從深度學(xué)習(xí)的發(fā)展歷程開始,系統(tǒng)介紹了基于深度學(xué)習(xí)的目標(biāo)檢測的基本問題及其相關(guān)處理方法與技術(shù),主要內(nèi)容涉及兩階段和單階段目標(biāo)檢測的理論、算法和研究成果。本書共6章,包括深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)類型、目標(biāo)檢測技術(shù)、基于FasterR-CNN的目標(biāo)檢測改進算法、領(lǐng)域自適應(yīng)及其在目標(biāo)檢測技術(shù)上的典型應(yīng)用、圖像識別模型改進及面部表情
機器學(xué)習(xí)已經(jīng)廣泛地應(yīng)用于各行各業(yè),深度學(xué)習(xí)的興起再次推動了人工智能的熱潮。本書結(jié)合項目實踐,首先討論主流機器學(xué)習(xí)平臺的主要特點和機器學(xué)習(xí)的實戰(zhàn)難點;在此基礎(chǔ)上,利用主流的機器學(xué)習(xí)開源平臺TensorFlow、OpenVINO、PaddlePaddle等,通過19個實戰(zhàn)案例,詳細(xì)地分析決策樹、隨機森林、支持向量機、邏輯回