人工智能開發(fā)叢書--數(shù)據(jù)挖掘與機(jī)器學(xué)習(xí):PMML建模(下)
定 價(jià):99 元
叢書名:人工智能開發(fā)叢書
當(dāng)前圖書已被 40 所學(xué)校薦購過!
查看明細(xì)
- 作者:潘風(fēng)文、黃春芳 著
- 出版時(shí)間:2020/9/1
- ISBN:9787122369871
- 出 版 社:化學(xué)工業(yè)出版社
- 中圖法分類:TP274
- 頁碼:228
- 紙張:
- 版次:01
- 開本:16K
本書詳細(xì)描述了PMML規(guī)范(Ver4.3)所支持的8種模型:神經(jīng)網(wǎng)絡(luò)模型、決策樹模型、規(guī)則集模型、序列模型、評分卡模型、支持向量機(jī)模型、時(shí)間序列模型和聚合模型。全書不是簡單地介紹PMML語法,而是融合各種挖掘模型基礎(chǔ)知識(shí)和算法知識(shí),告訴開發(fā)者如何融會(huì)貫通地掌握、使用PMML語言,不僅能夠?qū)W習(xí)到標(biāo)準(zhǔn)的PMML模型表達(dá)方式,而且能學(xué)習(xí)機(jī)器學(xué)習(xí)模型的豐富知識(shí),從而熟練地把PMML語言應(yīng)用到自己的項(xiàng)目實(shí)踐中。
本書可供從事數(shù)據(jù)挖掘(機(jī)器學(xué)習(xí))、人工智能系統(tǒng)開發(fā)的軟件開發(fā)者和愛好者學(xué)習(xí)使用,也可以作為高等院校大數(shù)據(jù)和人工智能等相關(guān)專業(yè)的教材。
1 神經(jīng)網(wǎng)絡(luò)模型(NeuralNetwork) 1
1.1 神經(jīng)網(wǎng)絡(luò)模型基礎(chǔ)知識(shí) 2
1.2 神經(jīng)網(wǎng)絡(luò)模型算法簡介 5
1.3 神經(jīng)網(wǎng)絡(luò)模型元素 9
1.3.1 模型屬性 10
1.3.2 模型子元素 14
1.3.3 評分應(yīng)用過程 28
2 決策樹模型(TreeModel) 29
2.1 決策樹模型基礎(chǔ)知識(shí) 30
2.1.1 決策樹模型簡介 30
2.1.2 邏輯謂詞表達(dá)式 31
2.2 決策樹模型算法簡介 33
2.2.1 卡方自動(dòng)交互檢驗(yàn)算法(CHAID) 33
2.2.2 迭代二叉樹ID3 42
2.2.3 分類器C4.5和C5.0 47
2.2.4 分類與回歸樹算法CART 53
2.3 決策樹模型元素 54
2.3.1 模型屬性 56
2.3.2 模型子元素 59
2.3.3 評分應(yīng)用過程 68
3 規(guī)則集模型(RuleSetModel) 79
3.1 規(guī)則集模型基礎(chǔ)知識(shí) 80
3.2 規(guī)則集模型元素 80
3.2.1 模型屬性 81
3.2.2 模型子元素 81
3.2.3 評分應(yīng)用過程 89
4 序列模型(SequenceModel) 93
4.1 序列模型基礎(chǔ)知識(shí) 94
4.2 序列模型算法簡介 97
4.2.1 GSP算法 97
4.2.2 SPADE算法 101
4.2.3 PrefixSpan算法 103
4.3 序列模型元素 104
4.3.1 模型屬性 106
4.3.2 模型子元素 107
4.3.3 評分應(yīng)用過程 118
5 評分卡模型(Scorecard) 119
5.1 評分卡模型基礎(chǔ)知識(shí) 120
5.2 評分卡模型算法簡介 121
5.3 評分卡模型元素 131
5.3.1 模型屬性 132
5.3.2 模型子元素 134
5.3.3 評分應(yīng)用過程 143
6 支持向量機(jī)模型(SupportVectorMachineModel) 145
6.1 支持向量機(jī)模型基礎(chǔ)知識(shí) 146
6.2 支持向量機(jī)模型算法簡介 148
6.3 支持向量機(jī)模型元素 152
6.3.1 模型屬性 154
6.3.2 模型子元素 155
6.3.3 評分應(yīng)用過程 164
7 時(shí)間序列模型(TimeSeriesModel) 167
7.1 時(shí)間序列模型基礎(chǔ)知識(shí) 168
7.2 時(shí)間序列模型算法簡介 171
7.2.1 算法概述 172
7.2.2 指數(shù)平滑算法 173
7.3 時(shí)間序列模型元素 176
7.3.1 模型屬性 177
7.3.2 模型子元素 178
7.3.3 評分應(yīng)用過程 192
8 聚合模型(MiningModel) 195
8.1 模型聚合基礎(chǔ)知識(shí) 196
8.2 挖掘模型MiningModel 197
附錄 225
后記 227