進(jìn)入21世紀(jì)以來(lái),衛(wèi)星重力的發(fā)展被認(rèn)為是大地測(cè)量學(xué)領(lǐng)域在繼GPS(全球定位系統(tǒng))后的又一次革命性進(jìn)步。尤其是低軌重力衛(wèi)星計(jì)劃GRACE的成功實(shí)施,為研究地球重力場(chǎng)時(shí)空變化提供了豐富的觀測(cè)數(shù)據(jù),給地球物理學(xué)、大地測(cè)量學(xué)、水文學(xué)和冰川學(xué)等領(lǐng)域帶來(lái)了勃勃生機(jī)。極地的戰(zhàn)略地位顯得越發(fā)重要,然而中國(guó)對(duì)極地的研究尚少。鑒于此,《Mass variations of polar ice sheet observed from space》重點(diǎn)介紹了目前從GRACE觀測(cè)數(shù)據(jù)里提取出地球表面質(zhì)量遷移信號(hào)的主流方法(mascon: mass concentration)的關(guān)鍵技術(shù),包括**的參數(shù)化方法、基于Tikhonov的時(shí)空約束、觀測(cè)數(shù)據(jù)的方差協(xié)方差矩陣等,并跟國(guó)際主流單位(美國(guó)宇航局噴氣推進(jìn)實(shí)驗(yàn)室NASA-JPL、戈達(dá)德飛行中心)的產(chǎn)品做出詳細(xì)的分析比較。更重要的是,本書將對(duì)近十年來(lái)北極冰川的質(zhì)量變化做出準(zhǔn)確全面的評(píng)估,可以服務(wù)于國(guó)家目前準(zhǔn)備開發(fā)的“冰上絲綢之路”-北極航道(“一帶一路”海上合作路線)。
更多科學(xué)出版社服務(wù),請(qǐng)掃碼獲取。
Contents
Preface
Abstract
1 Challenges and opportunities of mass variations in Greenland 1
1.1 Climate change and icemelt in Greenland 1
1.2 Contemporary challenges 3
1.3 Opportunities 4
2 GrIS mass variation: an overview 7
2.1 Introduction 7
2.2 GrIS Glaciers.7
2.3 Mass balance of the Greenland Ice Sheet 8
2.4 GrIS mass variation estimation.9
2.4.1 Altimetry 9
2.4.2 The input-output method (IOM) 10
2.4.3 Satellite gravimetry 11
2.4.4 Comparison of GrIS mass anomalies estimated by different methods 12
2.5 Summary 13
3 GRACE post-processingmethodologies: an overview 15
3.1 Introduction.15
3.2 Towards high spatial resolution methodologies 15
3.2.1 Themascon approach by Luthcke et al(2006a) 16
3.2.2 Themascon approach by Luthcke et al(2013) 17
3.2.3 Themascon approach by Sasgen et al(2010) 18
3.2.4 Themascon approach by Schrama andWouters (2011) 19
3.2.5 Themascon approach by Baur and Sneeuw (2011) 20
3.3 Summary 21
4 Statistically optimal estimation of Greenland Ice Sheetmass variations
from GRACEmonthly solutions using an improved mascon approach 23
4.1 Introduction.23
4.2 Methodology 26
4.2.1 Gravity disturbances .26
4.2.2 Parameterization 29
4.2.3 Distribution of data points 30
4.2.4 Data inversion.31
4.3 Numerical experiments 32
4.3.1 Experimental setup 32
4.3.2 Choice of the optimal data processing strategy 36
4.3.3 Spectral consistency 43
4.4 Real GRACE data analysis 46
4.4.1 Estimating mass anomaly uncertainties.47
4.4.2 Validation against modelled SMB time-series 48
4.4.3 Comparison with Greenland mass anomalies from other studies 52
4.5 Summary 54
5 Seasonalmass variations show timing and magnitude of meltwater storage in the Greenland Ice Sheet .57
5.1 Introduction 57
5.2 Adopted parameterization 59
5.3 Data 60
5.3.1 Ice discharge on multi-year scale 60
5.3.2 Ice discharge on intra-annual scale 60
5.4 Results and Discussion 63
5.4.1 Multi-year mass trend and acceleration budgets 63
5.4.2 Seasonal mass variations 67
5.5 Summary 76
6 Analysis and mitigation of biases in Greenland Ice Sheet mass balance trend estimates from GRACE mascon products 79
6.1 Introduction 79
6.2 Methods 81
6.2.1 Variant of themascon approach adopted to estimatemass anomalies 81
6.2.2 Adopted spatial constraints 82
6.3 Data 85
6.3.1 GRACE.85
6.3.2 RACMO2.3 86
6.4 Results .86
6.4.1 Understanding the discrepancies between the CSR, JPL and GSFC mascon products 86
6.4.2 Numerical study to analyze regularization-driven biases in mascon-type estimates .89
6.4.3 Improved spatial constraints 92
6.5 Discussion.98
6.5.1 Global mass conservation 98
6.5.2 “Improved” regularization vs regularizations applied to other mascon solutions 98
6.5.3 Added value of the “improved” regularization 99
6.6 Summary 99
7 Optimal mascon geometry in estimating mass anomalies within Greenland from GRACE103
7.1 Introduction 103
7.2 Methodology and parameterization 104
7.2.1 Adopted mascon approach 104
7.2.2 Parameterization of Greenland.105
7.3 Numerical study 107
7.3.1 Experimental set-up.107
7.3.2 Results 111
7.4 Analysis based on real GRACE data 126
7.4.1 Analysis of long-termlinear trends 128
7.4.2 Analysis of the estimates at the intermediate and short time scales 130
7.5 Summary.134
8 Conclusions 137
References 143
A Eigenvalue decomposition of the noise covariance matrix Cd .153
B Robustness of GRACE-based estimates at the intra-annual time scale 157
C Supporting Information for Chapter 6.161