本書是為適應(yīng)當(dāng)前教學(xué)改革的需要,根據(jù)高等學(xué)校非物理類專業(yè)物理基礎(chǔ)課程教學(xué)指導(dǎo)分委員會(huì)制定的非物理類理工學(xué)科大學(xué)物理課程教學(xué)基本要求,結(jié)合編者多年的大學(xué)物理雙語教學(xué)實(shí)踐和教改經(jīng)驗(yàn)編寫而成的。全書分為上、下兩冊(cè),共14章。上冊(cè)包括力學(xué)和熱學(xué);下冊(cè)包括電磁學(xué)、波動(dòng)光學(xué)和近代物理。本書除了介紹理工科普通物理教學(xué)大綱要求的基本內(nèi)
硅基半導(dǎo)體應(yīng)變技術(shù)是21世紀(jì)延續(xù)摩爾定律的關(guān)鍵技術(shù)之一。根據(jù)IRDS(國際設(shè)備和系統(tǒng)路線圖)對(duì)DRAM技術(shù)發(fā)展趨勢(shì)的預(yù)測(cè),在今后很長一段時(shí)間內(nèi),硅基半導(dǎo)體應(yīng)變技術(shù)仍然是提升半導(dǎo)體器件與電路遷移率和高場(chǎng)傳輸特性的可持續(xù)改進(jìn)關(guān)鍵技術(shù)。 本書共分為9章,主要內(nèi)容包括硅基半導(dǎo)體應(yīng)變理論與技術(shù)、硅基半導(dǎo)體應(yīng)變能帶理論與空間群、應(yīng)
本書介紹例外群的知識(shí),分為三部分:理論、應(yīng)用及附錄;共14章,包括經(jīng)典群、復(fù)合代數(shù)、例外若爾當(dāng)代數(shù)、例外群的算術(shù)子群、例外李群上同調(diào)、齊次空間、例外李群在理論物理和代數(shù)幾何中的應(yīng)用等。 BruceHunt于1986年在波恩大學(xué)取得博士學(xué)位,導(dǎo)師是FrierichHirzebruch(同時(shí)代數(shù)學(xué)家中的領(lǐng)軍人物)。Bru
本書為985-211叢書中的提高簡程,對(duì)考研和數(shù)學(xué)競賽中的數(shù)學(xué)分析解題方法和策略進(jìn)行了歸納和總結(jié),是在編者多年講授數(shù)學(xué)分析、數(shù)學(xué)分析選講、考研數(shù)學(xué)材料的基礎(chǔ)上,多次修訂而成,同時(shí)補(bǔ)充了考研數(shù)學(xué)分析綜合試題的解題方法和策略。本書共分為12講,內(nèi)容主要包括一元函數(shù)微積分、多元函數(shù)微積分、無窮級(jí)數(shù)及含參變量積分等。本書系統(tǒng)全
本書共分三編:第一編為引言,主要介紹了Stieltjes與Stieltjes積分、Radon-Stieltjes積分等;第二編為性質(zhì)篇,主要介紹了Stieltjes積分和抽象積分的極限性質(zhì)、Riemann-Stieltjes積分和積分中值定理等相關(guān)知識(shí);第三編為應(yīng)用篇,重點(diǎn)介紹了Stieltjes積分及其應(yīng)用、用Leb
本套叢書主要講述了馬老師帶領(lǐng)孩子們沿著“一帶一路”共建國家旅行中的所見所聞,通過生動(dòng)有趣的故事情節(jié),探討了與旅行相關(guān)的各種數(shù)學(xué)問題,不僅展示了數(shù)學(xué)在日常生活中的實(shí)際應(yīng)用,還通過小學(xué)生的獨(dú)特視角,描述了每個(gè)景點(diǎn)的地理位置、歷史文化、民族風(fēng)情,以及中國與“一帶一路”共建國家合作共贏、友誼綿長的故事。書中通過質(zhì)疑、追問和互動(dòng)
全書正文7章,原稿有4個(gè)附錄,譯者額外增加兩個(gè)附錄。正文首先介紹了畢達(dá)哥拉斯與著名的畢達(dá)哥拉斯定理,隨后向讀者展示了畢達(dá)哥拉斯定理的多種證明方式。隨后,介紹了畢達(dá)格拉斯定理在數(shù)學(xué)上的應(yīng)用、畢達(dá)哥拉斯三元組的性質(zhì)及這些三元組與其他數(shù)學(xué)定理間的關(guān)系。最后三章則結(jié)合案例說明了畢達(dá)哥拉斯平均值、畢達(dá)哥拉斯與音樂及分形藝術(shù)中的畢
數(shù)論是一個(gè)古老而迷人的數(shù)學(xué)分支,在現(xiàn)代計(jì)算機(jī)理論中起著重要作用。它也是業(yè)余數(shù)學(xué)家的熱門話題,因?yàn)樗恍枰叩葦?shù)學(xué)的知識(shí)。漢密爾頓學(xué)院的兩位著名數(shù)學(xué)家C.斯坦利·奧格爾維和約翰·T.安德森,從人們熟悉的概念開始,巧妙而輕松地將讀者帶入具有挑戰(zhàn)性的數(shù)論的神奇領(lǐng)域,包括對(duì)素?cái)?shù)、數(shù)的模式、同余算術(shù)、
宇宙的廣袤不斷激發(fā)人類的好奇心,令人浮想聯(lián)翩。為了更好地認(rèn)識(shí)無窮大和宇宙自誕生以來的演變歷程,我們必須轉(zhuǎn)向另一個(gè)無窮,即無窮小,以粒子物理學(xué)標(biāo)準(zhǔn)模型為基礎(chǔ),研究其中的夸克、輕子和玻色子,力爭在最小尺度上破解物質(zhì)的結(jié)構(gòu)之謎。沒有無窮小,我們就不能對(duì)宇宙大爆炸、大型恒星的結(jié)構(gòu)和演化及物質(zhì)的誕生展開描述。沒有兩個(gè)無窮,我們將
2000年,位于美國馬薩諸塞州劍橋市的克萊數(shù)學(xué)促進(jìn)會(huì) 發(fā)布了七大懸而未決的數(shù)學(xué)難題,并用巨額獎(jiǎng)金懸賞,尋求解答。 這七大難題是當(dāng)今數(shù)學(xué)領(lǐng)域難以攻克卻又意義重大的珠穆朗瑪峰。 本書則描述了這段攀登珠峰的旅途,始于哪些基礎(chǔ)的數(shù)學(xué)知識(shí), 又是如何經(jīng)過歷代數(shù)學(xué)家的層層推導(dǎo),得出具有普世性的猜想。 而為了給這些猜想找到一個(gè)完美